Space-time chaos in the nonlinear Schrödinger equation
نویسندگان
چکیده
منابع مشابه
Three types of chaos in the forced nonlinear Schrödinger equation.
Three different types of chaotic behavior and instabilities (homoclinic chaos, hyperbolic resonance, and parabolic resonance) in Hamiltonian perturbations of the nonlinear Schrödinger (NLS) equation are described. The analysis is performed on a truncated model using a novel framework in which a hierarchy of bifurcations is constructed. It is demonstrated numerically that the forced NLS equation...
متن کاملAn exponential time differencing method for the nonlinear Schrödinger equation
The spectral methods offer very high spatial resolution for a wide range of nonlinear wave equations, so, for the best computational efficiency, it should be desirable to use also high order methods in time but without very strict restrictions on the step size by reason of numerical stability. In this paper we study the exponential time differencing fourth-order Runge-Kutta (ETDRK4) method; thi...
متن کاملPhase-space approach to solving the time-independent Schrödinger equation.
We propose a method for solving the time-independent Schrödinger equation based on the von Neumann (vN) lattice of phase space Gaussians. By incorporating periodic boundary conditions into the vN lattice [F. Dimler et al., New J. Phys. 11, 105052 (2009)], we solve a longstanding problem of convergence of the vN method. This opens the door to tailoring quantum calculations to the underlying clas...
متن کاملIntegrable nonlocal nonlinear Schrödinger equation.
A new integrable nonlocal nonlinear Schrödinger equation is introduced. It possesses a Lax pair and an infinite number of conservation laws and is PT symmetric. The inverse scattering transform and scattering data with suitable symmetries are discussed. A method to find pure soliton solutions is given. An explicit breathing one soliton solution is found. Key properties are discussed and contras...
متن کاملThe Nonlinear Schrödinger Equation on the Interval
Let q(x, t) satisfy the Dirichlet initial-boundary value problem for the nonlinear Schrödinger equation on the finite interval, 0 < x < L, with q 0 (x) = q(x, 0), g 0 (t) = q(0, t), f 0 (t) = q(L, t). Let g 1 (t) and f 1 (t) denote the unknown boundary values q x (0, t) and q x (L, t), respectively. We first show that these unknown functions can be expressed in terms of the given initial and bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2021
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1730/1/012055